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Initially, this study arose from questions concerning the scattering of tsunamis as 
they propagate over the irregular topography of the deep waters of the ocean. 
The mathematical problem to which this led is pertinent to many other pheno- 
mena, however, and we direct the analysis, here, to the propagation of gravity 
waves over an irregular bottom topography and to the lateral oscillations of an 
elastic string whose ends undergo random longitudinal displacements. Several 
facets of the mathematical problem are rather fascinating but the results do 
suggest that scattering is not the most important part of the tsunami propagation. 

1. Introduction 
When a tsunami travels from the Aleutian Islands towards Hawaii, most of the 

wave energy lies in a spectral range which is characterized by a large horizontal 
scale compared to the depth of the ocean. Accordingly, the dynamics of the 
propagation could be sensitive to certain features of the bottom topography. 
Only waves whose lateral scales are comparable to that of the bottom topography 
could be significantly reflected, of course, but much of the energy is associated 
with waves which are not excluded by this observation. In  particular, if one 
pretended that the depth distribution, H = Ho( 1 + e cos 2k,x), was a suitable 
approximation for the study of such reflexions, one would use e N 1/50 and 
A = 277/k0 = O( 100 miles). With such figures, one would predict that most of the 
energy in the spectral band, Ik-kol < Bsk,, would never reach the ‘target’. 
There is no evidence that suggests that such ‘blocking’ occurs and one would 
like to be able to calculate more suitable estimates of the reflexion of waves 
travelling over an irregular bottom topography. The analysis of Carrier (1966) 
does not suffice for this purpose because the strength of the reflexion (even 
though it may be numerically important) is transcendentally small in the expan- 
sion parameter of that analysis; and, since that expansion is asymptotic in 
character, it cannot account for transcendentally small effects. 

In  this paper, we will develop a scheme whereby the strength of such reflexions 
can be estimated. In  this scheme, we will treat the phenomenon as though the 
bottom topography were one-dimensional and as though it were one realization of 
a family of bottom topographies whose properties are known stochastically. 
We adopt this point of view not only because no precise description of the 
topography is available, but also because the appropriate one-dimensional 
‘sections’ of that topography will vary from one tsunami to another in accord 
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with their different locations. Thus, in a very real sense, we are studying an 
ensemble of problems characterized by an ensemble of depth distributions. The 
palatability of the decision to treat the problem as a stochastic one is also 
enhanced by the observation that the deterministic problem with a realistic 
depth distribution would be very difficult to solve. 

The surface slopes associated with the tsunami are so small during the propaga- 
tion over the deep water that, even with the long propagation path, non-linear 
effects are entirely negligible; furthermore, the consequences of dispersion are 
already understood (Carrier 1966). Thus, an analysis of the propagation of a 
monochromatic wave in a region of irregular depth using linear shallow water 
theory will meet our needs. In such a theory the wave height ~ ( x ' )  eiWt obeys the 
equation 

where F(x ' )  is the position-dependent depth. When one defines 

x(x') = c/ox' dx"/F(x") (1.2) 

and N X )  = V ( 4 ,  

where C2 = wzF,,/g, F,, is the average depth, and F = Fb(l + ef(x)) ,  (1.1) becomes 

uxx + [ 1 + $(%)I u = 0. (1.3) 

A very convenient geometry for our purposes is that for which 

in x < 0, {: in x > L, 

f ( x )  = stochastically characterized in 0 < x < L, 

and in which the incident wave travels in the negative x direction. 
In this geometry we required that u ( x )  = eix in x < 0 for every realization of 

f ( x ) .  This condition uniquely implies the solution elsewhere, since u and u' must 
be continuous at  x = 0. In  particular, 

u= IeiX+9?e-ix in x > L 

and, since I eiz is the incident wave and 9e-i" is the reflected wave, 9?/I is the 
reflexion coefficient. The conservation of energy implies 

pp-- 19?p = 1, (1.4) 

so we need only information about 19?12+ 1II2 to infer information about the 
reflexion produced by a domain of length L. In  particular, since 

u(L) = leiL+%e-iL and u'(L) = i(Ie"-@e-iL) 

we see that 11(2+ lap = &{lu(L)(2+ lU'(L)12}. (1.5) 

Furthermore, since the conditions u(0) = 1 and u'(0) = i imply a unique 
solution in x > 0 (for each sample function, f ( x ) ) ,  our initial-value problem is 
given by ~ ' ' ( x )  + [1+ $(x)]u(x)  = 0 in x > 0 

with u(0) = 1, u'(0) = i. 

(1.6) 
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Our primary objective is to find 

P = (lu(L)12+ lu’(L)12) for L > 0, (1.7) 

where ( )  denotes the ensemble average over the set of solutions u(x) .  It is 
unlikely that one can easily obtain a characterization of the functions 1 + cf from 
which one can deduce more than {f(x)f(y)) and E. Accordingly, we will try to  
devise a procedure for estimating P which utilizes only information about the 
‘average size), E ,  of the topographical variations and the auto-correlation 
function, R, of those variations. We will also admit only stationary functions 
f(x); that is, 

Furthermore, we normalize R according to the rule 

(1.8) <f(x)f(y)) = R = R(x - Y)- 

s_3, R(x)dx = 1 (1.9) 

and this ensures a unique meaning for E .  

2. The vibrating string 
It iswell known (Lubkin & Stoker 1943) that, when the distance,& between the 

ends of an elastic string (whose fundamental mode has frequency wo when L = Lo) 
is required to be L = Lo( 1 + E cos 2w0t), the lateral oscillations of the string will 
grow in amplitude until the average (over time) of the tension is significantly 
affected by the stretching which accompanies the lateral motion. At such ampli- 
tudes, the motion ceases to increase in amplitude. It is very interesting to study 
the corresponding phenomenon when the separation of the ends of the string is 
given by 

where H(t )  is known only in a statistical sense. Of particular interest is the com- 
parison of the rates of growth of the lateral displacement and the contrast in the 
character of the consequences of the tensile change impliedby large displacements. 

The behaviour of an elastic string, when the non-linear effects of large dis- 
placements are significant, has been studied extensively (e.g. McLachlan 1950; 
Carrier 1949). A quick, oversimplified derivation of an appropriate mathematical 
model notes that, because longitudinal waves travel so fast, one can approximate 
the tension in the string, Tl(x,  t), by Tl(x ,  t )  2: T(t) .  The quantity T is given by 

L = Lo + H(t ) ,  

Here Tois the tension when the string is straight and of length Lo; E is the Young’s 
modulus of the material, A is its cross-sectional area, and H ( t )  = (LoT0/EA)ef(t) 
is the longitudinal displacement of the right-hand end of the string (see figure 1) 
at time t .  Thus, EAHIL, is the additional tension associated with the contribu- 
tion of H ( t )  to the stretching. When x, u(x,  t) are the co-ordinates of the position 
of the string at  time t, the integral term of (2.1) is the contribution to the tension 
which accompanies the stretching due to the bowing of the string. 
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Note that u(x, t )  is not the lateral displacement at time t of the particle whose 
rest position is a t  x, but it is a good enough approximation to that displacement 
to be used as though it really were. With that approximation, the conservation of 
momentum in the lateral direction is 

(Tuz), = Pfu,,. (2.2) 

Consistent with this equation, we shall limit our study to oscillations in which 

u(x,  t )  = u(t) sin (m/L) ,  

whereupon T/pA can be written as 

T/pA = tf[l+ €f ( t )  + u2], 

U” + [i + cf( t ) lu  + u3 = 0. 

so that, when t and u(t) are measured in appropriate units, 

T 
U 

F 
0 X 

X 

FIGURE 1. Sketch of string indicating the notation of 3 2. 

We are interested in the behaviour of u(t) when, for example, 

u(0) = uo < 1, u’ (0)  = 0. (2 .5 )  

When u is so small that the term u3 is unimportant, the problem degenerates to a 
linear one and we shall treat that first. 

3. Analysis of the stochastic problem 
The problem implied by the foregoing discussion is: How can one describe 

statistical properties of the ensemble of solutions u(t) of the initial-value problem 

u”+[l+cf(t)]u = 0 in t > 0 (3.1) 

with u(0) = 1, u’(0) = 0, (3.2) 

<f(t)f(T)> = w - 7) .  (3.3) 

when we know nothing about the ensemble of functions f ( t )  except that 

Generally speaking, we can do very little that is useful under these circum- 
stances unless we adopt some hypotheses which cannot be true with full generality 
but which are rigorously correct in very special circumstances and which are 
excellent approximations to the truth in a wide variety of circumstances. The 
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need for these hypotheses is most easily displayed by noting that (3. I), (3.2) imply 
that 

sin (t - t‘)f(t’) u(t’) dt’ (3-4) 

and, therefore, that 

u(t) u(7) = cos t cos T + e cos t sin (7 - 7’)f(7‘) 4 7 ’ )  d7‘ Jd 
+ E cos 7 

+ e2J J‘ sin (t  - t ’ )  sin (7 - 7‘)  f ( t ‘ )  f(+) u(t’) u(3-t) c~t‘ d7‘. 

sin (t - t’)f(t’) u(t’) dt’ J: 
(3.5) 

We take the ensemble average of each term in this equation, noting, e.g., that, 
whenever A is deterministic (and is therefore a common factor of each term 
being averaged) but g and h are random quantities, 

0 0  

( J ~ A ( t , t ‘ ) g ( t ’ ) h ( t ) ~ t ~  ) = / :A@,  t‘) (g(t’)h(t))dt’. 

We obtain an equation with three different unknown quantities, i.e. 

<w W), Cfct, W), and (f(Of(7) u(t) W). 
The first of these, if known, would describe very well those properties of u we 
would like to know and could reasonably hope to estimate with our limited 
knowledge about f. 

When e < 1, u(t) is well approximated over any time interval At < 1/e by 
A cos ( t  - #), where A and q5 are constants. That is, only small deviations in phase 
and amplitude from a purely trigonometric behaviour can be displayed by a 
solution of (3.1) over such a time interval. Thus, if we confine our justification 
arguments to cases where knowledge of the value off a t  t implies knowledge 
aboutf(7) only when lt-71 < 1/e, then we can hope that (f(t)u(t)) is very small 
and can be ignored. 

Similarly, we can d e h e  

p( t ,  7 )  = u(t) 47) - (WW) 
P(t9 7 )  = f(tIf(7) - (f(t)f(7)>. 

(u(t)Wf(t)f(7)) = (W N 7 ) )  Cf(t)f(7)> + (At ,  T ) P k  7) ) .  

and 
It follows that 

(3.6) 

Again, however, we expect p ( t ,  7) to be small whenp(t, T )  is significant and we can 
ignore the final term in (3.6). 

If we adopt the approximations (hypotheses) 

(f(t)U.(t)) = 0 (3.7) 

and ( f ( t ) f (Mt )W)  = ( 4 t )  w ) m t  - 71, (3.8) 

the ensemble average of (3.5) contains only one unknown quantity: namely 
(u(t)u(7)) = $(t, T )  and the integral equation for @(t, 7 )  is 

@(t, T )  = cos t cos T + €2 sin (t - t ’ )  sin (7 - f )R( t ’  - T‘ )  $-(t’, 7‘)dt’d7’. (3.9) 
/ J O T  
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In 3 7 we will establish further the validity of these conjectures. In  this section we 
content ourselves with the solution of the problem and examination of its 
implications. 

For most of the ensembles of functionsf(t) which we will consider, we adopt the 
normalization 

R ( x ) d ~  = 1. /Im 

jIm x2F(x)dx g 1. 

No generality is lost by this choice since e can be chosen to provide consistency 
with any given situation (i.e. any given set of functions f ( t ) ) .  

It is convenient, first, to treat the problem for which R(t) is ‘narrow ’; that is, 
for which 

For that case R(f -7 ’ )  can be replaced in (3.9) by 

R(t’-7’) 2: s(tl -7’) .  

Then, with t = 7, and with $(t, t )  = $( t )  

$( t )  = cos2t+ €2 1; sin2 (t - t ’ )  $(t’) dt’. (3.10) 

The Laplace transform of $( t )  is 
- s 2 +  2 
W) = X(S2 + 4) - 2s2 (3.11) 

and $(t)  N i(e+’t- e-ie’t) + cos2te-b’t. (3.12) 

Note that the growth rate of the oscillation depends only on the magnitude, 8, 
of the random coeecient and note that only after a time of order c2 has the 
oscillation ‘forgotten ’ its initial conditions. 

For future reference, it is useful to note that the substitution of $(t, t )  = $(t)  
into the right-hand side of (3.9) permits the calculation of $(t, 7). 
The asymptotic form of the result for large t and T can be written 

$(y, 7) N eica(t+7) e-Mt-71 cos (t  - 7). (3.13) 

In  the string context, we see (directly from (3.10) or by inference from (3.11)) 
that the lateral oscillations will continue to grow like eieZt for as long as (3.1) is a 
valid model of the dynamics, and that (statistically speaking) the phase of the 
oscillation wanders significantly only over time intervals comparable to the 
e-folding time of the amplitude growth. 

When R is not narrow enough to permit the foregoing approximation, we 
proceed as follows. 

We note first that the size of $( t )  = $(t ,  t )  will not be altered if we choose an 
earlier initial time, say to < 0, provided that we choose an appropriately smaller 
initial value, u(to). The useful extreme of this is to take 

u.(- 00) = 0 

as the initial condition and to normalize the solution of the homogeneous problem 
to which this leads by specifying that $(O) = 1. When this is done, there will be no 
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direct display of the way in which an initial condition at t = 0 would have 
constrained the phase at later times but we can easily infer this information when 
we write $(t ,  r )  as the product of a function oft + r and oft - r .  The latter factor, 
as we shall see, gives a clear picture of this constraint on the phase of u(t). 

When we put the initial time at -a, (3.9) becomes 

$(t,r) = e 2 j t  lT sin(t-t’)sin(r-r‘)R(t‘-r’)$(t’,r’)dt’dr’. (3.14) 
--m --m 

It is convenient to define new variables 

a = t + T ,  p = t--7, $(t, 7) = x(a, P) ,  (3.15) 

and (3.14) can then be written 

a-IB-B‘I 
x(a,/!?) =p.y d p ’ s  [cos (p-p’)- cos(a-a‘)]R(/9’)X(a’,p‘)da’. 

--m --m 

(3.16) 
One can verify, at this point, that x can be written 

x(a, p) = eoaNa h(P). (3.17) 

We substitute this in (3.16) and obtain 

cos (p - p’) e-E2N11-fll R(P’) h(/?’) dp’ (3.18) 

We recapture (3.13) when R is a delta function by substituting R(P’) = S(p’ - 0) 
into (3.18)) using the fact that our normalization requires that h(0) = 1, and 
noting that the eigenvalue, N, must have the value N = 4. 

More generally, since h(p)  must be even in p, (3.18) can be replaced by 

(3.19) 

(3.20) 
and h ( p )  can be written 

so that q(p) = (1 + cos 2p’)e-E2N’B-f11R(P’)q(P’)dp’. (3.21) 

W )  = a(& COSP, 

Whenever R(P’) is narrow compared to (e2N)-l, we can anticipate that &3‘) 
will vary very slowly so that at /3 = 0 (since q(0) = 1) 

1 ”  
8 N  --m 

1 N - 1 (1 + cos 2p‘) R(P’) dp’ (3.22) 

Thus N = i[R(O) +R(2)], (3.23) 

where a denotes the Fourier transform of R. That is, the growth rate depends 
only on the spectral power density off at  zero frequency and at  that frequency 
w which, when f = cos wt, drives the parametric oscillator most effectively. 
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Now we can find the asymptotic behaviour of q(P) by writing for (3.21) 

(3.24) 

Thus, for a broad range of ensembles, f ( t ) ,  the ensemble average of u(t)u(7), 
displays a growth rate whose time constant is (Ne2)-’ and a phase coherence 
which has the same time scale. The behaviour of {u2(t)) implied by this, i.e. 

(U2( t ) )  exP{t.2[m) +R(2)1) (3.25) 

has been noted by Keller (1960) but, as far as I can tell, the results for ( ~ ( 4 4 7 ) )  
given by (3.13) are new. In  particular, his procedures do not permit the deductions 
of the next section which deals with ensembles f ( t )  for which R is very broad. 

It is useful to rewrite the results given in (3.13) in the normalized form 

H(t  - 7 )  = +(t, ~ ) / [ + ( t ,  t )  $(T, 7)]f = e-*ezlt-71 cos ( t  - 7) (3.26) 

and to identify B(o) e & ~ ’ ( ~ + ~ ) ,  where B ( w )  is the Fourier transform of H(t  - 7 ) ,  as 
the ‘spectral power density at  time +(t + 7 )  ’. That transform, B ( w ) ,  is given by 

(3.27) 

Thus, the ‘spectral density of the response at time +( t+7 ) ’  is very strongly 
centred on unit frequency in accord with the arguments which led to the intro- 
duction of the hypotheses (3.7) and (3.8). 

4. A deterministic limit 

equation (Goldstein 1927) 
Ur,+ (1 - ECOS2t)u = o, 

has an amplitude which grows like eiet. It would be interesting to try to recover 
this result from the foregoing analysis and thereby test the breadth of applicabi- 
lity of that analysis. We can do this by choosing an ensemble of functions f ( t )  
(for (3.1)) each of which has the form 

The most rapidly growing linear combination of the solutions of the Mathieu 

(4.1) 

f ( t )  = cos (2t+p), (4.2) 

where ,LA is a random variable distributed uniformly over the interval 0 < p < 2n. 

(4.3) 

The auto-correlation of such an ensemble is 

R(t  - t ’ )  = g cos [2( t  - t ’ ) ] ,  

where, as in all of the ensembles discussed in this section, there is no advantage in 
normalizing R as we did in earlier sections. 

Using (4.3) in the integral equation for h(P),  we obtain 

We note again that h(P) must be even in ,5 so that cos (/3 - p’) can be replaced by 
cos /3 cos p’ and h(P) can be written 

h(P) = cosPs(P)- 
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We then obtain 

A broader class of functionsf(t) are those which form an 'almost deterministic 
problem', i.e. those for which 

R(P') = 4 cos 2pe-kcalP 
and k < l/s. 

For this set, (4.5) becomes 

( 1  + 2 cos 2p' + cos 4p') e-Ncal8-f1-k~*lfI q(p')dp', (4.7) 
1 "  

= mJ-* 
and the Mathieu case is that for which k = 0. 

It can be verified very easily when the analysis is finished that the discrepancies 
which arise when the cos 2p' and cos 4/3' terms are omitted are very small indeed. 
The apriori argument merely notes that q(p) may be one-signed and certainly is 
slowly varying; hence the oscillatory piece of the integrand cannot contribute 
much compared to that provided by the right-hand side of the following epproxi- 
mation to (4.7), i.e. 

When we differentiate (4.8) twice with regard to P, we obtain 

14. (4.9) 

Since q is even, we seek that solution of (4.9) for which q'(0) = 0 and we can 
confine our attention to the region p > 0. We can also adopt the new independent 
variable 

where Po = (ka2)-lln [(16Nze2)-1]. 
Using this, we have 

q" = (N2& - -L62 e--kflBI 
16 

2 = W P - P o ) ,  

qzs + ( N 2 / k 2 )  (e-z - 1 ) q = O  in x > o  (4.10) 

with qz( -k62po) = 0. 

For the degenerate case, k = 0, we use (4.9) and note that, since we require 
that q( & co) < M ,  there is a continuous spectrum of eigenvalues in the range 
- 1/46 < N < 1/46. The largest of these corresponds precisely to the growth rate 
mentioned in the first paragraph of this section. The entire range corresponds to 
the range of growth rates of all possible solutions of our Mathieu equation. 
For k =+ 0, the solution of (4.10) is 

and this satisfies the boundary condition at x = 0 provided that 

(4.11) 

(4.12) 

F L M  44 
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For k = O( 1) and N / k  
functions to obtain instead of (4.12) 

1, we can use the asymptotic description of such Bessel 

(4.13) 

where the numbers 2, are the roots of the equation 

Ai( -2) = 0, 

where A,(Z) denotes the Airy function. 

N stays close enough to 1/4s so that (4.13) is well approximated by 
The largest eigenvalue N corresponds to the root Zo2: 1-02. When k N O(l), 

No@) = IN1 - 1 - ( 1 - ~ ( 2 k s ) % ) .  2 0  
4s 

(4.14) 

Since (4.10) implies two equal but opposite values of N corresponding to the same 
eigenfunction, the growth rate of a solution of our problem can be anything 
between Mo(k) and -2Mo(k). That is, @(t, 7) is 

@(t, 7) N [A  eazN(t+7) + B ~ ' N ( t - 7 ) ]  cos (t  - 7) q(t - 7). 

It is slightly disconcerting that (4.8) admits many eigenvalues and eigen- 
solutions. Much of this multiplicity may be an artefact of the approximation 
techniques, but some of it is necessarily a result of the lack of control (on the part 
of the investigator) as to whether the initial condition on each realization of u(t) 
implies an initial phase which maximizes the early growth. In  fact, the continuum 
of solutions of (4.8) for k = 0 reflects the fact that any growth rate N 6 1/48 
can be realized by an appropriate choice for the distribution of initial phases. 

On the other hand, it is clear that the results found in 3 3 for narrow R do not 
display a lack of uniqueness. This is consistent with the fact that the initial phase 
matters very little when f is so 'random' that the relation (fu) = 0 is maintained 
not by a coherent 'orthogonality ' betweenfand u (as in the Mathieu case), but by 
a statistically based, thorough lack of correlation. The absence of this coherent 
orthogonality renders the entering phase irrelevant for narrow R. 

In  accord with the foregoing, the proper interpretation of the results given in 
this paper for very broad R identifies them with the maximum growth rate on the 
maximum reflexion coefficient associated with a given ensemble of functions 
f ( t ) .  For narrow R, no such interpretative restriction is implied! 

5. Non-linear effects 

elastic string when non-linear effects are not ignored is 
As noted in 1, the differential equation which governs the lateral motion of an 

u"(t)+[l+$u2-sEf(t)]u = 0. (5.1) 

Appropriate boundary conditions are 

u(0) = uo < 1, u'(0) = 0) 

but we will simplify the analysis again by moving the initial time, to, toward - co 
with a corresponding decrease in u(to). 



Xtochustically driven dynamical systems 259 

Whenf(t) is a known function oft, multi-scaling methods can be used (Cole 
1968; Carrier & Pearson 1968) to establish the well-known fact that u N A(t,) cost 
(with t ,  a slowly varying function oft)  is a uniformly valid approximation to u. 
Furthermore, one can also verify that under such circumstances the role played 
by the non-linear term is duplicated when the $u3 is replaced by A2u. The success 
of this simplification (sometimes called the method of averaging) arises because 
the principal physical role of the u3 term is to provide an augmentation of the 
time-averaged tensionin the string. Whenf(t) is cos 2t, the (dimensionless) tension 
at very small amplitudes is unity and the system is so tuned that the oscillations 
grow. When the amplitude A has become large enough, the 'average tension', 
1 +A2, is no longer 'tuned' to f ( t )  and, in particular, when A2 = &, no further 
growth will occur. Thus, the non-linear effects act primarily to detune the 
system and limit the amplitude of the oscillation. 

In  our problem, where f ( t )  is described only stochastically, we must not only 
use the fact that, for each realization off, 9u3 can be replaced by ?u (where the 
bar denotes the time average over a cycle) but we must also use the somewhat 
cruder approximation wherein we take 3 - (u2). It is not easy to assess the 
accuracy of this approximation (I suspect it is very good); however, we are 
seeking here a delineation of the character of the non-linear effects and the 
accuracy of the numbers we get is not at  issue. 

All of these words underlie the replacement of (5.1) by 

U"(t) + [ I +  $ ( t )  - €ff(t)] u(t) = 0, (5.2) 

where, in this section, again $ ( t )  = (u2(t)). (5.3) 
It is convenient to introduce the variables 

x = (1+$)tdt  

and u = V(X)/ ( l+  $)*. 
1: 

With these variables, (5.3) becomes 

Here $' and $'I denote d$/dS and d2$/dS2. 
Even whenf(t) has an extremely broad auto-correlation function, R, we expect 

q5 to grow no faster than e*es; accordingly, we see that the right-hand side of (5.6) 
is at most of order 8 and we ignore those terms. Actually, we will carry out the 
details of the analysis here, only for (f(t)f(t')) = &(t - t ' )  and, in that problem, the 
terms we ignore are only of order 6. 

The pertinent solution of the expurgated (5.6) is 

Following the arguments of 8 3, this can be replaced by 
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and ( V 2 ( S ) )  = W ( S )  is given by 

When 
(5.9) becomes 

(f (t’)f“’’)) = &(t’ - t”), 

The first equality arises because 

/8( t ’  - t”)dX” = [1+ $(t’)]&; 

the relative smallness of the integral associated with the part of sin2 (S  - 8‘) 
which is omitted in the second equality can be verified easily when the answer has 
been displayed. 

When we differentiate (&lo),  we get 

€2 W ( S )  W’(X) = -- 
2 ( l+#)$’  

i.e. 
aw €2 w - 
at 2 1 + + -  

But 

so $’( 1 + 2 4 )  = +e2$ and In q5 + 2$ = +e2t. (5.11) 

Thus, when $ < 1, 

4 = (UZ) = W/( l+$ , ,  

q5 1: 

and, when 4 9 1, 4 N * € Z t .  

Unless To, the tension in the string at rest, is much smaller than the yield stress 
times the cross-sectional area of the string, the equation will not be meaningful 
when $ 3  1 .  Even when this is the case, (5.11) is of interest in that it indicates 
that the amplitude-limiting effect of the detuning of the deterministic problem 
never occurs in this stochastic problem. The reason for this is not deeply hidden; 
the energy supply which supports the amplitude growth can be taken by the 
string from the input (f(t)) primarily in a spectral range which centres on 
twice the fundamental frequency of the string (see any discussion of Mathieu’s 
equation). As the string detunes via the increasing tension in the f = cos 2t 
case, the available energy goes to zero. In the stochastic case, however, the avail- 
able energy is spread over the entire spectrum (uniformly when R = 8(t-t’)) 
and no detuning occurs. The decrease in growth rate occurs because, with non- 
linear effects, the stored energy-amplitude relation does not permit an exponential 
amplitude growth. 

It would be more complicated to deal with more generalf(t) than those of the 
foregoing analysis but, fortunately, it does not seem to be necessary. It is clear 
that, for narrow R(t-t’), the quantity Qs2t in (5.11) would be replaced by a 
close relative of 

tszt[8(0)+8(2[1+41)]. 
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When f is almost deterministic, as in the examples of $4, R ( w )  is very small 
(but not zero) except near w = 2. Accordingly, the string will almost detune; that 
is, the early growth will resemble that of the linear deterministic problem but, at 
amplitudes where the growth would have ceased in the deterministic problem, 
the amplitude of the non-linear oscillation will continue to grow very slowly. 

The work required to render these final paragraphs credibly quantitative 
seems not to be justified by any need. 

6. The wave propagation problem 
The mathematical problem associated with wave propagation across a region 

with irregular bottom topography differs from that associated with the fore- 
going linear string problem only in that the term cos z in (3.4) must be replaced 
by eix. 

The procedure used in 3 2 must therefore be modified to take account of the 
fact that u(x) is complex and to allow the calculation of (I~’(x)1~). The former 
requirement is met when we talk about 1u21 instead of u2 and the latter can be 
accomplished as follows. 

(6.1) 

(6.2) 

Since 
u ( x )  = eiz + eJox sin (z - x’)f(x‘) u(x’)dz’, 

it follows that 

and that 

(Iu’(x)~~) = 1 + eZJ 

where u* denotes the complex conjugate of u. 
The equation which corresponds to (3.9) is 

u(x) u*(y) = e((s-g)+ €2 / I d x ’ / I  sin (z - x’)sin(y - y ’ ) ~ ( z ’  - y’ )  (u(z’) u*(y‘))dy’. 

It is evident that (6.4) can be solved by the procedures of $ 3 and that (lu’(x)l2) 
.can then be calculated from (6.3). It also seems evident, without exhibiting 
details, that the discrepancies between the results for this problem and those for 
the string can only arise in connexion with the ‘memory’ of the phenomenon for 
its initial conditions. In  our analysis, this memory was wiped out when we 
extended the initial-value co-ordinate (in $3)  to - co. Thus, all details are neces- 
sarily repetitions of 4 3 and we omit them. We record only that 

9((1~(~)12)+(Iu’(~)12)} = 1~%?12+ 1112 = e f ~ 2 ~ [ ~ ( 2 ) + ~ ( 0 ) l  

except when R is so extremely wide (with 2 O(l/e)) that the integral equation, 
(3.21), must be treated with more care. In  the oceanic context this is not the case 
and the reflexion coefficient must have the order of magnitude 

u’(x) = i eiz + e cos (x - x’)f(x‘) u(z’) d d  L 
-x 2 

0 0  
cos(z-z’)”s(X-x’’)R(x”x’’)(u(z’)u*(z’’))dz’dz”, (6.3) 

(6.4) 
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where L is the distance (2n times the number of wavelengths) traversed by the 
monochromatic wave. Since, during the deep water propagation, only the spectral 
region with wavelength greater than 50 miles is interesting, +e2L < 0.06 and 
1,921 < 0.17. 

It pays to recall, at this stage, that the topography is not one-dimensional and 
that the one-dimensional treatment can be expected to overestimate the re- 
flexion. Accordingly, we see that the cumulative reflexion associated with the 
irregular topography is weak. Note, however, that if the bottom topography were 
trigonometric, the reflexion of the spectral content of the wave at  resonance 
(where the wave wavelength is twice the topographical wavelength) would 
exhibit a reflexion coefficient - 1 

1,922. I = - - -  
e h L  + 1 ’ trig 

which, with 6 = 1/50 and L = 300, gives 

I.9?trisl N 0.95. 

We conclude that very little of the tsunami energy in any spectral region is 
deterred by the irregularities of the deep water bottom topography from reaching 
any given ‘target ’. 

7. validity 
Since all of the foregoing results depend on the validity of the hypotheses of 

(3.7) and (3.8), the credibility of this material should be enhanced by an assess- 
ment of the accuracy of those hypotheses. In  this section we will indicate such an 
assessment for three sets of functions f(x). 

When f(x) represents what is conventionally called Gaussian white noise, the 
quantities of interest are 

(f(x)f(x’)} = R(x - x’) = 6(x - x’), 

~(.)f”‘)f(x”)~(x”)} = R(x - x’)R(x” - x”) +R(x - x’)R(x’ - x’”) 
+ R(x - x”)R(x’ - x”), 

(f(x). . .f(x@n))) = R(x - x’) R(x” - 2”’). . .R(x(2”--1)- x‘2”’) 

+ ...([ 2n- 11 [Zn- 31 ...[ 11 of them), (7.1) 

( 7.2) cf(x). . .f(x‘2”-”)) = 0. 

The solution of (3.1) (3.2) for any realization off(.) can be written in the form 

44 = U O ( 4  + E U l ( Z )  + €2Uz(X) + . . . , 
where 

uo(x) = cosx, 

(7.3) 
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Using (7.1) and (7.2) in (7.4) we find 

and 

and, more generally, (u&) urn(%)) = 0 (n =k m), 

However, since 
(u%D = -w4-1(@)1. 

(u"(.)) = (ui(z) + 2suo(x) u&) + €Z[U?(X) + 2u,u,] + . . .), 
the foregoing results can be ' collected' in the form 

m m 

n= 0 n=O 
c ."(u;(x)) = cos2x+ €2 L?[€"(u;(x))], 
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i.e. (u2(x)) = cos2x = e"(u"(Z)). (7.7) 

This equation is identical with (3.10) and we have established that the result 
given by (3.12) is rigorously correct for all values of 8, whenf(z) is Gaussian white 
noise. 

One can also use the recipes summarized under (7.4) to show directly that 

(fWu(4) =- 0, 

(f(x)f(x') u ( 4  4%')) = Cf(4f(x')> (u (4  u(x')). 

f(z) = cos (2x+cc), 

We have already seen that the results obtained when e < 1 and when each f(x) 
is trigonometric, i.e. where 

are the same as those obtained by a direct deterministic treatment of the Mathieu 
equation. It is known that this deterministically obtained solution is uniformly 
valid in x and, therefore, we need only check the hypotheses (3.7), (3.8) to first 
order in s. Omitting details, the fact is that, to this order, the hypotheses are 
satisfied. 

Thus, for two very different extreme situations (R(z-x')  very narrow and 
R(x  - 2') indefinitely wide) the hypotheses of this paper are completely valid. 

It is interesting to check another, slightly broader family of functionsf(x). We 
again choose f to be associated with a Gaussian process but take 

where k > 0. 
Equations (7.1) and (7.2) are valid for this problem (but R is now given by 

(7.8)) and we can proceed as we did with the white noise problem. This time the 
integrals, all of which have exponential-trigonometric integrands, lead to a very 
messy set of recipes; the only interesting fact to be gleaned is that instead of 
getting (3.9), which has the form 

@ ( t , ~ )  = c o s t c o s r + ~ ~ 2 ' [ @ ( t , r ) j ,  

R(x- x') = 2ke-kIz-"'I, (7.8) 



we get 

Clearly, when s2/8k2 < 1, our hypotheses lead to an excellent estimate of the 
growth rate. 

Since one cannot get firm results (other than loose inequalities) in problems 
where we don’t know the statistics off (other than (f(x)f(z‘))), the use of the 
truncation hypotheses used in this paper seems as useful a procedure for the 
explicit estimation of growth rates as are any which have yet been proposed. 
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